Some characterizations of weighted Hardy spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Properties of Composition Operators on Weighted Hardy Spaces

Let φ be an analytic map of unit disk D into itself, consider the composition operator Cφ defined by Cφ(f) = f◦φ whenever f is analytic on D. In this paper, we discuss necessary and sufficient conditions under which a composition operator on a large class of weighted Hardy spaces is a compact.

متن کامل

Extension of Hardy Inequality on Weighted Sequence Spaces

Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...

متن کامل

Radial Maximal Function Characterizations for Hardy Spaces on RD-spaces

An RD-space X is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds. The authors prove that for a space of homogeneous type X having “dimension” n, there exists a p0 ∈ (n/(n+ 1), 1) such that for certain classes of distributions, the L(X ) quasi-norms of their radial maximal functions and grand maximal functions are ...

متن کامل

Some Characterizations of Developable Spaces

Two characterizations of developable spaces are proved which may be viewed as analogues, for developable spaces, of the Nagata-Smirnov metrization theorem or of the "double sequence metrization theorem " of Nagata respectively.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2010

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2009.07.054